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Computer Aided Design Tools for Mixed Electronic/Photonic VLSI

The main program goals of this project were to develop the physics-based models for photonic
elements (sources, detectors and interconnects), to express these in terms of electrical
equivalents, and to implement them in the new Photonic SPICE. This transformation between
the optical and the electrical dimensions were performed in such a way that all effects of optical
emission, propagation and detection were reproduced by their electronic counterparts. The
physics-based models were checked against experimental results.

We performed modeling of small-signal and transient effects in vertical cavity surface emitting
lasers (VCSELs), and the modeling of optical detectors and interconnects. The models were
tested against experiments and implemented in Photonic SPICE.

A VCSEL continuous wave model that includes self-heating was developed. The model
reproduces all the features of available experimental data. The equivalent circuit of the model,
implemented in Photonic SPICE, consists of interacting electrical, optical and thermal
subcircuits.

In the design of VLSI systems, computer-aided design (CAD) tools have become a prerequisite
for assuring correct operation and optimized solutions. Without these tools, multiple design and
fabrication iterations are required. As the momentum for the development of mixed
photonic/electronic systems are steadily increasing, it is of great importance to establish a CAD
infrastructure for effective and accurate modeling and simulation of such heterogeneous systems.

Our approach to modeling and simulation of heterogeneous photonic/ electronic systems took
advantage of the fact that the ubiquitous SPICE simulator can be viewed as a general solver for a
set of ordinary differential equations. Even though SPICE does all its calculations in units of
volts and amperes, there are, of course, no restrictions on how to interpret the results. Hence, the
total circuit can be divided into several physical domains, each having a separate set of physical
quantities as unknowns. Our simulator, AIM-Spice [1], currently supports three domains:
electrical, optical and thermal. The advantages of this approach are its inherent efficiency and
flexibility. All domains are simulated in a single kernel running in a single process. Thus, there
are no overhead due to inter process and inter kernel communications. The approach is flexible
since a single device can span more than one domain. This is particularly important in the
modeling and simulation of optoelectronic interconnects, where a single device has ports in both
the electrical and the optical domains. '




In the report, we first give an overview of the models that are implemented. Then we describe a
test case where we have used our simulator to study a smart-pixel based system for free-space
optical interconnects. Finally, we summarize the conclusions of our study.

Device Models: Important devices used in optoelectronic systems are laser diodes and light-
emitting-diodes (LEDs) on the transmitter side. On the receiver side, p-i-n diodes, Schottky
barrier diodes, and metal-semiconductor-metal devices are commonly used detectors.

Among the different emitter structures listed above, the vertical cavity surface emitting laser
(VCSEL) has stood out as the best candidate for many applications (see, for example, [2]). A
VCSEL model implemented in AIM-Spice is based on first-order rate equations and includes
effects such as self-heating and parasitic resistances and leakage currents. On the receiver end,
we have implemented models for both p-i-n diodes and metal-semiconductor-metal (MSM)
structures. The models are described in detail in [3,4].

Case Study-An optical Interconnect System: Smart-pixel arrays (SMAs) have been introduced as
a viable technology for free-space optical interconnects [5]. A cross sectional view of a single
pixel in a SMA is shown in Fig. 1. Note that each pixel consists of a VCSEL and an MSM
photodetector to provide bi-directional data flow. The other elements of the structure are the
CMOS integrated circuit on a Si substrate, the photonic devices on a GaAs substrate and the
micro lenses on a glass substrate. The elements are stacked together using a special process.
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Fig. 1. Cross sectional view of a single pixel in a SMA.

a) Block diagram; b) Transistor diagram of CMOS driver and receiver.



To illustrate how this smart pixel optical interconnect system can be simulated using our single
kernel simulator, we connect two smart-pixels back-to-back having free air in between. The
block diagram of this setup is shown in Fig. la. To obtain realistic simulation results, we have
extracted VCSEL and MSM parameters from real devices fabricated at Honeywell Corporation.
Furthermore, for the CMOS circuits, we used BSIM3v3.1 parameter sets for a commercial
quarter-micron process running at a power supply level of 2.5V. The schematics of the CMOS
driver and the receiver are shown in Fig. 1 b. To include the interconnect effect, we included
parasitic capacitances and inductors for both the driver-VCSEL and the receiver-MSM
interconnects. The free air medium (see the block diagram in Fig. 2 a) was modeled in terms of a
simple attenuation. The top level SPICE description of the system shown in Fig. 2a is listed
below. The subcircuit definition of the smart pixel is also included in the listing. Note that there
are both electrical and optical nodes in the circuit.
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Free-air optical interconnect

.1ib mos_models.cir
.1ib vcsel model.cir
.1ib msm_model.cir

* Power supplies
vddl vddl 0 d¢ 2.5
vssl vssl 0 dec O
vdd2 vdd2 0 dc 2.5
vss2 vss2 0 dc O

* Input signal generator
xsg vddl vssl vin signal_generator

* Two smart pixels connected back-to-bak

xpl vddl vssl vin voutl oinl ooutl smart_pixel
¥p2 vdd2 vss2 vin2 vout oin2 oout2 smart pixel
xtrl ooutl oin2 free air

xtr2 oout2 oinl free air

* The smart pixel subcircuit

.subckt smart pixel vdd vss vin vout oin oout
xdriver vdd vss vin oout driver

xreceiver vdd vss oin vout receiver

.ends smart pixel

The simulation results for a simple 1GHz clock signal used as the input signal waveform is
shown in Fig. 3. We note that the output waveform is delayed about 0.5 ns though the link. The
estimated maximum frequency performance of this circuit is about 1.2 GHz. This frequency can
be increased by utilizing more sophisticated analog CMOS c1rcu1try and signaling protocols (for
example low-voltage differential signaling (LVDS)).
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Fig. 3. Computed waveforms



In summary, we have described an efficient approach to the modeling and simulation of mixed-
domain electrical/optical systems utilizing a single kernel simulator. We illustrated the approach
by presenting a case study of an optoelectronic interconnect system.
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